Remote patient management after discharge of hospitalized heart failure patients: the Better Effectiveness After Transition - Heart Failure (BEAT-HF) study

Michael K Ong MD PhD1, 9, Patrick S Romano MD MPH2, Sarah Edgington MA1, Harriet U Aronow PhD6, Andrew D Auerbach MD MPH5, Jeanne T Black PhD MBA6, Teresa De Marco MD5, Jose J Escarce MD PhD1, 7, Lorraine Evangelista RN PhD3, Barbara Hanna RN PhD(c) 2, Theodore G Ganiats MD4, 8, Barry Greenberg MD4, Sheldon Greenfield MD MPH3, Sherrie H Kaplan PhD MPH3, Asher Kimchi MD6, Honghu Liu PhD1, Dawn Lombardo MD3, Carol M Mangione MD MSPH1, Bahman Sadeghi MD MBS1, Banafsheh Sadeghi MD PhD2, Majid Sarrafzadeh PhD1, Kathleen Tong MD2, Gregg C Fonarow MD1, and the BEAT-HF Research Group

1University of California, Los Angeles; 2University of California, Davis; 3University of California, Irvine; 4University of California, San Diego; 5University of California, San Francisco; 6Cedars-Sinai Medical Center; 7RAND Corporation; 8University of Miami; 9VA Greater Los Angeles Healthcare System

Supported by the Agency for Healthcare Research and Quality (R01 HS019311), the National Heart Lung and Blood Institute (RC2 HL101811), the National Center for Advancing Translational Science UCLA CTSI (UL1TR000124), the Robert Wood Johnson Foundation (66336), the Sierra Health Foundation, the University of California Center for Health Quality and Innovation, and the participating institutions.

Author potential conflicts of interests: Dr. De Marco: Consultant: Boston Scientific, Cardiokinetics, Gambro; Advisory Boards: Otsuka, Bayer. Dr. Fonarow: Consultant: Amgen, Bayer, Baxter, Medtronic, Novartis
Background

• It remains unclear if telemonitoring approaches provide benefits for heart failure (HF) patients following hospitalization.
 – Systematic reviews of smaller studies show readmission and mortality reductions
 – Recent large RCTs (e.g., Tele-HF, TIM-HF) showed no benefit for readmission or mortality

• Multiple potential explanations for recent RCTs lack of benefit
 – Adherence concerns: newer remote monitoring approaches and engaging patients prior to discharge could improve adherence
 – Telemonitoring approach: pairing remote monitoring with a telephone-based nurse care manager using scheduled contacts similar to in-person care transition programs could improve outcomes
Study Objective

• Evaluate the effectiveness of a care transition intervention using remote patient monitoring among a broad population of older adults hospitalized with HF

• Primary outcome: 180-day all-cause readmission

• Secondary outcomes: 30-day all-cause readmission, 30-day mortality, and 180-day mortality
Study Methods: Intervention

• Pre-discharge HF education
 – Low health literacy self-management using “teach-back” techniques
 – Use of telemonitoring equipment

• Regularly scheduled telephone coaching
 – 9 telephone health coaching calls by RN starting 2-3 days after discharge
 – Weekly calls for first month, monthly calls through 6 months

• Telemonitoring: weight, blood pressure, heart rate, symptoms
 – Daily use of Bluetooth-enabled weight scale and a blood pressure/heart rate monitor integrated with text device
 – Data transferred via cellular bandwidth, daily review by RN
 – Patients called if exceeded predetermined threshold parameters
 – Patient’s HF providers notified for significant symptoms, if necessary sent to ED
Study Methods: Evaluation

• Prospective RCT: intervention vs. usual care
 – Conducted at six academic health systems in California

• Study population: Individuals age 50 or older hospitalized and receiving active treatment for decompensated HF
 – Defined as HF with initiation of or an increase in diuretic treatment
 – Exclusions: could not fully participate in intervention, expected intensive post-discharge care, HF expected to improve after procedure
Study Methods: Analyses

• Intention to treat framework
 – 80% power to detect a 28% relative reduction in primary outcome

• Unadjusted and adjusted survival analyses and multivariable logistic regressions
 – Adjusted models controlled for age, gender, race/ethnicity, insurance, income, social isolation, comorbidities, year and quarter of enrollment, with enrollment site as random effects

• Post-hoc analyses on adherence to intervention
 – Adherence evaluated based on total days alive
 – Additionally adjusted for education and baseline scores for self confidence and self maintenance in managing HF
Enrollment
Assessed for eligibility (n=30,844)
- Excluded (n=29,407)
 - Not meeting inclusion criteria (n=28,476)
 - Declined to participate (n=550)
 - Discharged before approach (n=375)
 - Expired before approach (n=8)
Randomized (n=1,437)

Allocation
Allocated to control (n=722)
- Received allocated intervention (n=722)
- Did not receive allocated intervention (n=0)
Allocated to intervention (n=715)
- Received allocated intervention (n=715)
- Did not receive allocated intervention (n=0)

Follow-Up
Discontinued intervention (n=307)
- Expired (n=106)
- Withdrew (full withdrawal, n=13)
- Lost to survey follow-up (n=188) (includes withdrawal from survey and unreachable)
Discontinued intervention (n=306)
- Expired (n=92)
- Withdrew (full withdrawal, n=20)
- Withdrew (withdrawal from intervention, n=87)
- Lost to survey follow-up (n=107) (includes withdrawal from survey and unreachable)

Analysis
Analyzed (n=722)
Analyzed (n=715)
Results

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Intervention (N = 715)</th>
<th>Usual Care (N = 722)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age (IQR)</td>
<td>73 (62 - 84)</td>
<td>74 (63 - 82)</td>
</tr>
<tr>
<td>Female</td>
<td>45.40 (41.57 - 49.23)</td>
<td>45.70 (41.90 - 49.50)</td>
</tr>
<tr>
<td>African American</td>
<td>22.09 (18.89 - 25.28)</td>
<td>22.32 (19.14 - 25.50)</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>11.35 (8.91 - 13.79)</td>
<td>10.41 (8.08 - 12.74)</td>
</tr>
<tr>
<td>Caucasian/White</td>
<td>54.60 (50.77 - 58.43)</td>
<td>54.90 (51.10 - 58.70)</td>
</tr>
<tr>
<td>Asian/Pacific Islander/Other</td>
<td>11.96 (9.47 - 14.46)</td>
<td>12.37 (9.86 - 14.88)</td>
</tr>
<tr>
<td>HF Severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYHA Class I</td>
<td>0.17 (-0.16 - 0.50)</td>
<td>0.69 (0.01 - 1.36)</td>
</tr>
<tr>
<td>NYHA Class II</td>
<td>23.44 (20.02 - 26.86)</td>
<td>25.82 (22.25 - 29.39)</td>
</tr>
<tr>
<td>NYHA Class III</td>
<td>65.60 (61.76 - 69.43)</td>
<td>63.86 (59.94 - 67.77)</td>
</tr>
<tr>
<td>NYHA Class IV</td>
<td>10.79 (8.29 - 13.30)</td>
<td>9.64 (7.23 - 12.05)</td>
</tr>
</tbody>
</table>
Results

• 1,437 individuals enrolled and randomized between October 2011 and September 2013
 – 715 intervention, 722 usual care
 – No significant participant characteristics differences between groups
 – Median age 73 years; 45.6% were female, 22.2% were African American, 61.2% New York Heart Association (NYHA) III or IV

• Intervention
 – 82.7% of participants used the telemonitoring equipment
 • At 180 days, >50% calls: 68.0%, >50% telemonitoring 51.7%
 – 221,211 remote observations, 18,531 exceeded threshold parameters
 • median of 22 (interquartile range, IQR, 8 to 48) per participant
 – 3,700 scheduled health coaching calls completed
 • median of 6 (IQR, 3 to 8) per participant
Results

Hazard ratio for 30-day readmission with intervention 1.03 (95%CI 0.83 – 1.29)
Adjusted hazard ratio for 30-day readmission with intervention 1.01 (95%CI 0.80 – 1.28)

Hazard ratio for 180-day readmission with intervention 1.03 (95%CI 0.89 – 1.19)
Adjusted hazard ratio for 180-day readmission with intervention 1.03 (95%CI 0.88 – 1.20)
Results

Hazard ratio for 30-day mortality with intervention 0.61 (95%CI 0.37 – 1.02)
Adjusted hazard ratio for 30-day mortality with intervention 0.53 (95%CI 0.31 – 0.93)

Hazard ratio for 180-day mortality with intervention 0.88 (95%CI 0.67 – 1.15)
Adjusted hazard ratio for 180-day mortality with intervention 0.85 (95%CI 0.64 – 1.13)
Results

<table>
<thead>
<tr>
<th></th>
<th>Proportion of calls completed</th>
<th>Proportion of days monitored</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
<td><50%</td>
</tr>
<tr>
<td>Readmit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 day</td>
<td>23.3</td>
<td>34.7</td>
</tr>
<tr>
<td>180 day</td>
<td>52.2</td>
<td>54.0</td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 day</td>
<td>3.4</td>
<td>8.7</td>
</tr>
<tr>
<td>180 day</td>
<td>14.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>

***p≤0.001
Limitations

• Study sites are all California academic medical centers
 – 3/6 sites were safety net hospitals, broad patient eligibility criteria increases generalizability.

• Use of other types of personnel instead of registered nurses potentially could have affected study outcomes.

• Intervention not directly integrated with the physician practices caring for the patients
 – Increasingly possible with advances in electronic health records.

• Rapid technological change with remote patient monitoring
 – Newer approaches, such as implantable devices or tablets and unobtrusive sensors could increase adherence or provide better information to identify problems following discharge.
Conclusions

• The BEAT-HF study found that a combination of remote patient monitoring with care transition management did not reduce 180 day all cause readmission after HF hospitalization
 – Hospitalizations in the first 30 days and 180 day mortality were also not reduced with the intervention

• Mortality in the first 30 days was reduced significantly in prespecified multivariable adjusted analyses
 – Case review indicates due to in-hospital death differences after randomization, less likely to be due to the intervention
Conclusions

• Individuals with higher adherence may experience fewer readmissions and deaths than those with lower levels of adherence
 – Further studies specifically designed to evaluate effects of different levels of adherence are needed to confirm these findings as these were from post-hoc analyses

• BEAT-HF designed to determine the effectiveness of the combined care transition and remote patient monitoring intervention using a broad population of high-risk and diverse patients hospitalized with HF that would be consistent with actual practice
 – Increases generalizability